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Abstract

Thanks to the roll-out of smart meters, availability of fine-grained electricity usage data has rapidly grown. Such data has
enabled utility companies to perform robust and efficient grid operations. However, at the same time, privacy concerns
associated with sharing and disclosure of such data have been raised. In this paper, we first demonstrate the feasibility
of estimating privacy-sensitive household attributes based solely on the energy usage data of residential customers. We
then discuss a framework to measure privacy gain and evaluate the effectiveness of customer-centric privacy-protection
schemes, namely redaction of data irrelevant to services and addition of bounded artificial noise.
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1. Introduction

Thanks to the penetration of smart meters and other
types of commodity electricity usage monitoring devices,
availability of fine-grained electricity usage data has in-
creased remarkably. Besides utilization by utility compa-
nies, for instance demand forecasting and fault/anomaly
detection, such data may be shared with third-party
service providers either directly from customers (e.g.,
an energy usage monitoring device may upload data to
the service provider’s cloud for data analytics, etc.) or
via utility companies (e.g., by means of Green Button
Connect My Data [1]) to benefit from a variety of services,
including energy-saving recommendations, social gaming,
and services like demand response.

On the other hand, we are facing a number of new
types of privacy risks that were not found in the age
prior to the smart grid era. Privacy concerns associated
with residential energy usage data have been outlined by
National Institute of Standards and Technology (NIST) [2]
and include leakage of personally-identifiable information
and behavioral information. Moreover, unlike power
utility companies that are strictly bound by regulations,
other service providers may have the freedom to utilize
the collected data for unclaimed purposes and/or share
the collected data or analysis results with another party,
e.g., advertising or marketing companies, without explicit
consent from customers. Therefore, it is not feasible
for electricity customers to retain control and awareness
over usage of their data once the data are released.
Nevertheless, most electricity customers share their data
without enough understanding privacy exposure or ways
to mitigate such risks [2].

To allow electricity customers to control privacy risks
upon sharing electricity usage data with other parties, a
framework called customer-centric energy usage manage-
ment was proposed [3]. This framework can accommodate
a variety of data pre-processing schemes applied by cus-
tomers themselves for privacy protection [4, 5] and is well
aligned with policies regarding privacy and data ownership
established by utility companies in the US, e.g., [6], as well
as European Union [7]. However, they did not show any
quantitative evaluation of privacy gains, which can provide
electricity customers with meaningful guidelines regarding
how much pre-processing is needed to attain the expected
level of privacy.

In this paper, we first design mechanisms to esti-
mate privacy-sensitive household information based on
household-level energy usage data to highlight potential
privacy risks through experiments using real-world energy
usage traces [8]. We further discuss a way to measure
privacy gains of two privacy-protection mechanisms by
means of redaction and artificial noise, which are intro-
duced in the context of the aforementioned customer-
centric electricity usage data management [3, 4].

The rest of this paper is organized as follows. In
Section 2, we discuss the literature on privacy pertinent to
electricity usage data. In Section 3, to educate electricity
customers, we demonstrate the feasibility of identifying
privacy-sensitive household information with only electric-
ity usage data. In Section 4, we discuss a framework
to measure privacy gains and apply it to evaluate the
effectiveness of two types of privacy-protection schemes
that electricity customers can apply to mitigate privacy
risks. We provide supplementary discussion in Section 5
and then conclude the paper in Section 6.
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2. Related Work

Kavousian et al. [9] analyzed the determinants of
household electricity usage. The results indicated that
household characteristics, appliance, electronics stock, and
occupants indeed have a large influence on residential
electricity usage patterns. An Irish case study [10] also
examined the correlation between household/occupant
characteristics and electricity usage using a multiple linear
regression model. Their results demonstrate that, in addi-
tion to household characteristics, household composition
and status of the head of household (e.g., age and social
class) also have a strong correlation with electricity usage,
which has provided a foundation for our investigation.

Beckel et al. [11] used an electricity usage dataset that
was collected during a smart meter trial. Along with the
electricity usage data, users’ responses to a questionnaire
before and after the trial are available and include various
household characteristics. Based on these ground truth
data, the authors demonstrated the feasibility of revealing
characteristics from electricity usage data using various
classifier models with an overall accuracy of around 70%.
This feasibility is further supported by Aderson et al. [12],
who demonstrated a concept of energy monitoring for
a smart census. Recently, Cong et al. [13] conducted
work on discovering missing user attribute labels using
smart meter data. In this work, we investigate how much
sensitive information can be inferred without any privacy
protection, which is based on the feasibility revealed by
these efforts. We further introduce extra features to enrich
the feature space and apply other data analysis techniques
for better accuracy. Moreover, we consider this accuracy
as a baseline and evaluate the effectiveness of privacy-
protection schemes.

Based on the assumption that the power utility compa-
nies fulfill their duty to protect users’ electricity usage data
as the data custodian, the focus of privacy protection is
shifting to data sharing with third-party service providers.
In this direction, researchers have proposed customer-
centric energy usage management, a privacy protection
scheme to enable meaningful data sharing with third
parties while preserving users’ privacy [3]. We should
note that, customer-centric energy usage data manage-
ment does not aim at privacy protection against util-
ity companies, but against third-party service providers.
Thus, it is complementary to, for example, battery-based
privacy protection schemes like [14, 15]. Moreover, the
framework is orthogonal to privacy protection against
attackers targeting smart metering infrastructures, e.g.,
those summarized in [16]. While [3] implemented privacy
protection by means of redaction, there is another work
that proposed to add artificial noise before data sharing
to mitigate privacy risks [4]. However, to the best of our
knowledge, there is no quantitative evaluation regarding
how much privacy gain is attained from these protection
schemes, which has motivated us to carry out such a study.

3. Estimating Privacy-Sensitive Household
Attributes Based on Energy Usage Data

3.1. Residential Energy Usage Dataset

To design and evaluate baseline schemes to estimate
privacy-sensitive household attributes, and eventually, to
evaluate the effectiveness of privacy-preservation schemes
in the next section, we utilize a publicly-available electric-
ity usage dataset collected in the UK, called the Household
Electricity Survey (HES) dataset [8]. The primary reason
we chose this dataset is that, in addition to electricity
usage data with either 10-min or 2-min granularity, this
dataset includes various details of each subject household
obtained through the survey, which will be discussed later
in this section.

Regarding electricity usage data, we used measure-
ments collected at 2-min intervals in 220 households. HES
data consist of appliance-level electricity usage data, so
we aggregated energy consumption of all appliances in
each household to approximate household-level traces.
Furthermore, in order to make the data closer to realistic
smart meter data, we down-sampled the 2-min interval
household-level traces into 10-min intervals. Finally,
because the period of data collection differs among house-
holds, we normalized the data by using the overall average
for each season to remove seasonality.

Table 1: Class definitions for each attribute
Attribute Class Definition # of Samples

Single 1
0

Single
Not Single

62
158

Occupancy 1
0

> 2
≤ 2

84
136

Employment
Status

1
0

Full-time
Otherwise

123
97

Children
1
0

With children
Without children

72
148

Social Grade
1
0

“A” or “B”
Otherwise

76
144

Among the household details available in the HES
dataset, in this study we focused on the following, which
are considered to have marketing value and are therefore
privacy sensitive: whether the household is occupied by
a single person (Single), size of household occupancy
(Occupancy), employment status of a household head
(Employment Status), whether a household has any chil-
dren (Children), and the social grade of each household
(Social Grade). Class labels were determined based on
the data, and their definitions are summarized in Table 1.
Namely, Single and Children are defined as boolean (i.e.,
true or false), Occupancy is set to 1 if the size of occupancy
(i.e., the number of residents) is higher than 2 while it is
set to 0 otherwise, and Employment Status is defined as
binary regarding whether the household head is a full-time
worker or not. In the HES dataset, the social grade has
six levels (A, B, C1, C2, D, and E), and we grouped A and
B, which correspond to the high social grades, and formed
the other group for the rest.
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3.2. Designing Baseline Classifiers

This section discusses the design of baseline classifiers
that are assumed to be used by a curious (or malicious)
third-party energy-data analytics service provider that
attempts to reveal the privacy-sensitive data of customers.

We initially defined 114 features derived from the afore-
mentioned energy usage data. Based on our preliminary
experiments, features calculated based on weekly data
showed better accuracy overall compared to those com-
puted based on monthly data. Thus, the results discussed
on this paper are based on the features computed using
1-week-long data. For the experiment in this section, we
used the first week of data of each household, resulting in
220 samples. Our initial list of features included basic ones
such as the average, variance, and quantiles of electricity
usage of each household, as well as features proposed in
[11? ]. In addition, we included features derived from
time-series analysis, including autocorrelation, degrees of
an autoregressive integrated moving average (ARIMA)
model, kurtosis, and skewness, and features based on Fast
Fourier Transform (e.g., the most dominant frequency).

Then, we performed feature selection by Random
Forest-Recursive Feature Elimination (RF-RFE) [17] for
each household attribute to be estimated. This feature
selection method provides an importance score for each
feature, and according to the score, we first selected 15
features out of the population for each classification. They
are summarized in Figure 1. With these features, by
using WEKA [18], we applied multiple classifiers that are
popularly used, namely AdaBoost, kNN, SVM, Random
Forest, Bagging, and BayesNet. Because including all 15
features did not result in the best accuracy, we tweaked
the number of features (i.e., selected a different number
of features from the top) and conducted experiments for
each classifier. As a result, we found that the features
highlighted with bold font in Figure 1 provided the best
accuracy. Some of the results are shown in Figure 2.

Accuracy in these figures is computed based on the
number of correctly-classified samples through a 5-fold
cross validation on WEKA. Note here that WEKA’s cross-
validation implementation applies stratification of data
(i.e., the ratio of samples of both classes are roughly the
same in all groups). The best classifiers for the household
attributes of our interest are summarized in Table 2. Note
again that, for the best classifiers, features shown with
bold font in Figure 1 are used.

Table 2: Best-performed classifies and accuracy

Household Attribute Classifier Accuracy (%)

Single AdaBoost 79.09
Occupancy Random Forest 73.18

Employment Status Bayes Net 72.72
Children SVM 75.45

Social Grade Random Forest 70.00

As can be seen from the table, privacy-sensitive house-
hold attributes can be estimated with over 70% accuracy

by using only electricity usage data, and therefore sharing
fine-grained electricity usage data should be considered as
a serious privacy risk for electricity customers. Comparing
our results with those in the literature [11], even though
a direct comparison is not completely fair owing to the
differences in the datasets and definitions of attributes,
our classifiers attained noticeably better performance (over
10% increase) in estimating Social Grade, while having
similar accuracy for Single, Employment Status, and Chil-
dren. In the rest of this paper, we assume these classifiers
are utilized by curious (or malicious) third-party service
providers. The accuracy achieved here (seen in Table 2) is
used as the baseline for comparison when we evaluate the
effectiveness of privacy-protection schemes.

4. Evaluating Effectiveness of Customer-centric
Privacy-protection Schemes

In this section, we evaluate the effectiveness of privacy-
protection schemes developed for customer-centric energy
usage data management and sharing schemes [3]. In
particular, as two data pre-processing techniques that a
customer can apply before data sharing, we focus on the
redaction of data [3] and the addition of artificial noise [4].

For the experiments in this section, we evaluate the
effectiveness of privacy protection in the following way.
For the sake of comparison with the baseline discussed in
Section 3, we follow a procedure similar to a 5-fold cross
validation. Specifically, we randomly form five groups of
samples in a stratified manner just as done by WEKA
in Section 3.2. For each round, we use four of them for
training and the other for testing. The difference from
the typical 5-fold cross validation is that, while we use
the original electricity usage data for training, for testing
we use pre-processed data (see Figure 3). In this way,
we can compare the results with those in Table 2. In
sum, our experiments emulate a case where a (potentially
malicious) service provider has classifiers trained based
on original, labeled data collected from a number of
customers and attempts to reveal privacy of customers
who are submitting either original (Electricity Customer
1 in Figure 4) or pre-processed (Electricity Customer 2
in the same figure) electricity usage data to evaluate the
effectiveness of pre-processing for privacy protection.

4.1. Privacy Protection by Redaction

As discussed in [3], hiding some portion of data
(e.g., showing only electricity usage during daytime) is
considered effective for privacy protection. As can be
seen in Figure 1, multiple classifiers rely on consumption
during evening as well as night time, which justifies this
approach. On the other hand, redacting part of the data
is still considered acceptable for many real-world services.
For example, services such as demand response, which
typically aim at controlling peak-time electricity demand
and therefore are particularly interested in consumption
during peak times in the afternoon [3].
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Figure 1: Short-listed features for each household attribute classification. Those highlighted in bold font are features used by the best
classifiers.

(a) Occupancy (b) Employment Status

Figure 2: Accuracy comparison among different classifiers with different numbers of features.

Figure 3: Evaluation of privacy gain following 5-fold cross validation
using pre-processed data.

We performed two sets of experiments with different
degrees of redaction: one redacting electricity usage data
except for typical peak hours (10am to 2pm) on each day
and the other redacting data except from 6am to 6pm. We

Figure 4: Our model for evaluating privacy gain. Our framework
measures privacy gain in terms of differences in estimation accuracy
against Electricity Customer 1, who shares original data, and against
Electricity Customer 2, who implements customer-centric data pre-
processing before data sharing.
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Figure 5: Accuracy of classification using redacted data. Figure 6: Accuracy of classification using data with artificial noise.

assume that the redacted data are replaced, by the service
provider, with the overall average computed based on
training data. The results are presented in Figure 5, along
with the baseline accuracy from Table 2, which are labeled
“Original Data.” As can be seen, the accuracy decreases
according to the degree of redaction. In particular,
accuracy reduction (i.e., privacy gain) is significant for
Children, Employment Status, and Social Grade.

4.2. Privacy Protection by Artificial Noise

Another privacy-protection strategy is to add an artifi-
cial, bounded noise to mask the exact electricity usage.
Adding noise would not be preferred for services that
require exact data, such as electricity billing and perfor-
mance evaluation of demand response services. However,
a certain amount of noise is considered acceptable for
energy-saving recommendation services etc. because ap-
proximate data are usually sufficient for many residential
customers.

We evaluated the effectiveness of bounded, random
noise added on an electricity usage measurement in each
time slot. Figure 6 shows the results of experiments
with two different types of artificial noise. The first
strategy is to add zero-mean, ±10% random noise (i.e.,
we generated random numbers between 0.9 and 1.1 for
each electricity usage measurement and multiplied the
factor with the corresponding measurement). The second
strategy is slightly more intelligent and adds positive noise
when the actual electricity usage of a certain time slot is
below the overall average of the household, while adding
negative noise otherwise. As can be seen in the figure,
we see noticeable decrease in classification accuracy for
Children and Social Grade.

However, compared to the redaction discussed in the
previous section, the overall privacy gain by artificial noise
seems limited. One plausible reason is that the added
noise was to some extent canceled out when computing
features based on the sum of the measurements. If we
consider further advanced mechanisms to add noise, the

impact would be more noticeable. Moreover, the primary
motivation for the artificial noise discussed in [4] was to
make non-intrusive load monitoring (NILM) or load disag-
gregation [19, 20] techniques less accurate. In particular,
NILM techniques often rely on “load signatures” derived
from the energy consumption patterns of each appliance,
and noise in electricity usage data makes the signature
matching less accurate. Therefore, when the feature set for
classification includes those derived based on NILM results
(e.g., the usage pattern or frequency of a certain type of
appliance), the privacy gain could be more significant.

5. Discussion and Future Research Directions

Based on the results shown in Figures 5 and 6, we can
define a privacy-gain metric that summarizes the results
for the sake of easier interpretation. For instance, we can
calculate the (weighted) average of decreases in accuracy.
Alternatively, from the customers’ perspective, another
metric can be defined in terms of how much information
can be correctly identified. The exploration of effective
metrics will be part of our future work.

In this study, we assumed that a labeled dataset for
training is given. It may be argued that this assumption
would be unrealistic because even utility companies do
not have customer information other than basic informa-
tion such as the name of the household head, mailing
address, phone number, and billing information. However,
there are a non-negligible number of customers who
may voluntarily surrender privacy-sensitive information,
including those we evaluated in this paper, along with their
electricity usage data, through questionnaires requested in
exchange for some benefits (e.g., discounts or promotional
coupons). By collecting data in such a manner, a service
provider could obtain a labeled dataset of a sufficient size
in reality.

One limitation of our study is that we did not take into
account the adaptation of a data analytics mechanism.
A service provider may adjust the feature set and/or
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classifiers to better handle pre-processed data (e.g., noisy
data or redacted data). In other words, after somehow
collecting a sufficient amount of pre-processed data and
ground-truth class labels, classifiers could be trained with
them. Such a study is part of our future work.

In addition, we simplified the problem into a binary
classification for all household attributes of interest. For
example, regarding the occupancy size, instead of estimat-
ing the actual number, we just paid attention to identifying
whether it is an extended family. In general, it is more
challenging to estimate exact numbers, as also pointed out
in [11]. Although we admit that it is an important part
of our future work, the binary information explored in t
his paper still has value for marketing and advertisement
purposes.

Another direction for future work is to evaluate clas-
sifiers that include advanced features such as those de-
rived from non-intrusive load monitoring. It is expected
that households with different attributes have different
appliance usage patterns. Given the availability of open-
source tools such as [20], the derivation of such information
becomes feasible.

6. Conclusions

In this paper, we demonstrated the feasibility of esti-
mating privacy-sensitive household attributes that can po-
tentially be abused for unsolicited advertising etc. Based
on our experiments using a public dataset, all of five
privacy-sensitive attributes considered in this paper can
be estimated with over 70% accuracy. We further quanti-
tatively studied the effectiveness of two privacy-protection
measures that customers can practically apply before
sharing data with potentially malicious third parties,
namely redaction and artificial noise.

We hope our contributions shed light on the privacy
risks associated with electricity usage data and the quan-
titative evaluation of privacy-protection schemes not only
to counter such risks but also to better educate electricity
customers.
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